在嵌入式linux中,双向循环链表是一种非常重要的数据结构。它们被广泛应用于各种场景,如内核模块、驱动程序、网络协议栈等。在本文中,我们将深入探讨linux通用的双向循环链表的实现原理和相关技术。

struct list_head {
    struct list_head *next, *prev;
};
登录后复制

这是链表的元素结构。因为是循环链表,表头和表中节点都是这一结构。有prev和next两个指针,分别指向链表中前一节点和后一节点。

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) 
    struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}
登录后复制

在初始化的时候,链表头的prev和next都是指向自身的。

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next)
{
    next->prev = new;
    new->next = next;
    new->prev = prev;
    prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next);
#endif

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
    __list_add(new, head, head->next);
}


/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
    __list_add(new, head->prev, head);
}
登录后复制

双向循环链表的实现,很少有例外情况,基本都可以用公共的方式来处理。这里无论是加第一个节点,还是其它的节点,使用的方法都一样。
另外,链表API实现时大致都是分为两层:一层外部的,如list_add、list_add_tail,用来消除一些例外情况,调用内部实现;一层是内部的,函数名前会加双下划线,如__list_add,往往是几个操作公共的部分,或者排除例外后的实现。

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
    next->prev = prev;
    prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    entry->next = LIST_POISON1;
    entry->prev = LIST_POISON2;
}
#else
extern void list_del(struct list_head *entry);
#endif

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    INIT_LIST_HEAD(entry);
}
登录后复制

list_del是链表中节点的删除。之所以在调用__list_del后又把被删除元素的next、prev指向特殊的LIST_POSITION1和LIST_POSITION2,是为了调试未定义的指针。
list_del_init则是删除节点后,随即把节点中指针再次初始化,这种删除方式更为实用。

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
                struct list_head *new)
{
    new->next = old->next;
    new->next->prev = new;
    new->prev = old->prev;
    new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
                    struct list_head *new)
{
    list_replace(old, new);
    INIT_LIST_HEAD(old);
}
登录后复制

list_replace是将链表中一个节点old,替换为另一个节点new。从实现来看,即使old所在地链表只有old一个节点,new也可以成功替换,这就是双向循环链表可怕的通用之处。
list_replace_init将被替换的old随即又初始化。

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
    __list_del(list->prev, list->next);
    list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
                  struct list_head *head)
{
    __list_del(list->prev, list->next);
    list_add_tail(list, head);
}
登录后复制

list_move的作用是把list节点从原链表中去除,并加入新的链表head中。
list_move_tail只在加入新链表时与list_move有所不同,list_move是加到head之后的链表头部,而list_move_tail是加到head之前的链表尾部。

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
                const struct list_head *head)
{
    return list->next == head;
}
登录后复制

list_is_last 判断list是否处于head链表的尾部。

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
    return head->next == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
    struct list_head *next = head->next;
    return (next == head) && (next == head->prev);
}
登录后复制

list_empty 判断head链表是否为空,为空的意思就是只有一个链表头head。
list_empty_careful 同样是判断head链表是否为空,只是检查更为严格。

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
    return !list_empty(head) && (head->next == head->prev);
}
登录后复制

list_is_singular 判断head中是否只有一个节点,即除链表头head外只有一个节点。

static inline void __list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    struct list_head *new_first = entry->next;
    list->next = head->next;
    list->next->prev = list;
    list->prev = entry;
    entry->next = list;
    head->next = new_first;
    new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *    and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    if (list_empty(head))
        return;
    if (list_is_singular(head) &&
        (head->next != entry && head != entry))
        return;
    if (entry == head)
        INIT_LIST_HEAD(list);
    else
        __list_cut_position(list, head, entry);
}
登录后复制

list_cut_position 用于把head链表分为两个部分。从head->next一直到entry被从head链表中删除,加入新的链表list。新链表list应该是空的,或者原来的节点都可以被忽略掉。可以看到,list_cut_position中排除了一些意外情况,保证调用__list_cut_position时至少有一个元素会被加入新链表。

static inline void __list_splice(const struct list_head *list,
                 struct list_head *prev,
                 struct list_head *next)
{
    struct list_head *first = list->next;
    struct list_head *last = list->prev;

    first->prev = prev;
    prev->next = first;

    last->next = next;
    next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head->prev, head);
}
登录后复制

list_splice的功能和list_cut_position正相反,它合并两个链表。list_splice把list链表中的节点加入head链表中。在实际操作之前,要先判断list链表是否为空。它保证调用__list_splice时list链表中至少有一个节点可以被合并到head链表中。
list_splice_tail只是在合并链表时插入的位置不同。list_splice是把原来list链表中的节点全加到head链表的头部,而list_splice_tail则是把原来list链表中的节点全加到head链表的尾部。

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
                    struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head, head->next);
        INIT_LIST_HEAD(list);
    }
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
                     struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head->prev, head);
        INIT_LIST_HEAD(list);
    }
}
登录后复制

list_splice_init 除了完成list_splice的功能,还把变空了的list链表头重新初始化。
list_splice_tail_init 除了完成list_splice_tail的功能,还吧变空了得list链表头重新初始化。
list操作的API大致如以上所列,包括链表节点添加与删除、节点从一个链表转移到另一个链表、链表中一个节点被替换为另一个节点、链表的合并与拆分、查看链表当前是否为空或者只有一个节点。
接下来,是操作链表遍历时的一些宏,我们也简单介绍一下。

/**
 * list_entry - get the struct for this entry
 * @ptr:    the &struct list_head pointer.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) 
    container_of(ptr, type, member)
登录后复制

list_entry主要用于从list节点查找其内嵌在的结构。比如定义一个结构struct A{ struct list_head list; }; 如果知道结构中链表的地址ptrList,就可以从ptrList进而获取整个结构的地址(即整个结构的指针) struct A *ptrA = list_entry(ptrList, struct A, list);
这种地址翻译的技巧是linux的拿手好戏,container_of随处可见,只是链表节点多被封装在更复杂的结构中,使用专门的list_entry定义也是为了使用方便

/**
 * list_first_entry - get the first element from a list
 * @ptr:    the list head to take the element from.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_struct within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) 
    list_entry((ptr)->next, type, member)
登录后复制

list_first_entry是将ptr看完一个链表的链表头,取出其中第一个节点对应的结构地址。使用list_first_entry是应保证链表中至少有一个节点。

/**
 * list_for_each    -    iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 */
#define list_for_each(pos, head) 
    for (pos = (head)->next; prefetch(pos->next), pos != (head); 
            pos = pos->next)
登录后复制

list_for_each循环遍历链表中的每个节点,从链表头部的第一个节点,一直到链表尾部。中间的prefetch是为了利用平台特性加速链表遍历,在某些平台下定义为空,可以忽略。

/**
 * __list_for_each    -    iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 *
 * This variant differs from list_for_each() in that it's the
 * simplest possible list iteration code, no prefetching is done.
 * Use this for code that knows the list to be very short (empty
 * or 1 entry) most of the time.
 */
#define __list_for_each(pos, head) 
    for (pos = (head)->next; pos != (head); pos = pos->next)
登录后复制

__list_for_each与list_for_each没什么不同,只是少了prefetch的内容,实现上更为简单易懂。

/**
 * list_for_each_prev    -    iterate over a list backwards
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 */
#define list_for_each_prev(pos, head) 
    for (pos = (head)->prev; prefetch(pos->prev), pos != (head); 
            pos = pos->prev)
登录后复制

list_for_each_prev与list_for_each的遍历顺序相反,从链表尾逆向遍历到链表头。

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:        another &struct list_head to use as temporary storage
 * @head:    the head for your list.
 */
#define list_for_each_safe(pos, n, head) 
    for (pos = (head)->next, n = pos->next; pos != (head); 
        pos = n, n = pos->next)
登录后复制

list_for_each_safe 也是链表顺序遍历,只是更加安全。即使在遍历过程中,当前节点从链表中删除,也不会影响链表的遍历。参数上需要加一个暂存的链表节点指针n。

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:        another &struct list_head to use as temporary storage
 * @head:    the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) 
    for (pos = (head)->prev, n = pos->prev; 
         prefetch(pos->prev), pos != (head); 
         pos = n, n = pos->prev)
登录后复制

list_for_each_prev_safe 与list_for_each_prev同样是链表逆序遍历,只是加了链表节点删除保护。

/**
 * list_for_each_entry    -    iterate over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)                
    for (pos = list_entry((head)->next, typeof(*pos), member);    
         prefetch(pos->member.next), &pos->member != (head);     
         pos = list_entry(pos->member.next, typeof(*pos), member))
登录后复制

list_for_each_entry不是遍历链表节点,而是遍历链表节点所嵌套进的结构。这个实现上较为复杂,但可以等价于list_for_each加上list_entry的组合。

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)            
    for (pos = list_entry((head)->prev, typeof(*pos), member);    
         prefetch(pos->member.prev), &pos->member != (head);     
         pos = list_entry(pos->member.prev, typeof(*pos), member))
登录后复制

list_for_each_entry_reverse 是逆序遍历链表节点所嵌套进的结构,等价于list_for_each_prev加上list_etnry的组合。

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member)         
    for (pos = list_entry(pos->member.next, typeof(*pos), member);    
         prefetch(pos->member.next), &pos->member != (head);    
         pos = list_entry(pos->member.next, typeof(*pos), member))
登录后复制

list_for_each_entry_continue也是遍历链表上的节点嵌套的结构。只是并非从链表头开始,而是从结构指针的下一个结构开始,一直到链表尾部。

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member)        
    for (pos = list_entry(pos->member.prev, typeof(*pos), member);    
         prefetch(pos->member.prev), &pos->member != (head);    
         pos = list_entry(pos->member.prev, typeof(*pos), member))
登录后复制

list_for_each_entry_continue_reverse 是逆序遍历链表上的节点嵌套的结构。只是并非从链表尾开始,而是从结构指针的前一个结构开始,一直到链表头部。

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member)             
    for (; prefetch(pos->member.next), &pos->member != (head);    
         pos = list_entry(pos->member.next, typeof(*pos), member))
登录后复制

list_for_each_entry_from 是从当前结构指针pos开始,顺序遍历链表上的结构指针。

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)            
    for (pos = list_entry((head)->next, typeof(*pos), member),    
        n = list_entry(pos->member.next, typeof(*pos), member);    
         &pos->member != (head);                     
         pos = n, n = list_entry(n->member.next, typeof(*n), member))
登录后复制

list_for_each_entry_safe 也是顺序遍历链表上节点嵌套的结构。只是加了删除节点的保护。

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member)         
    for (pos = list_entry(pos->member.next, typeof(*pos), member),         
        n = list_entry(pos->member.next, typeof(*pos), member);        
         &pos->member != (head);                        
         pos = n, n = list_entry(n->member.next, typeof(*n), member))
登录后复制

list_for_each_entry_safe_continue 是从pos的下一个结构指针开始,顺序遍历链表上的结构指针,同时加了节点删除保护。

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member)             
    for (n = list_entry(pos->member.next, typeof(*pos), member);        
         &pos->member != (head);                        
         pos = n, n = list_entry(n->member.next, typeof(*n), member))
登录后复制

list_for_each_entry_safe_from 是从pos开始,顺序遍历链表上的结构指针,同时加了节点删除保护。

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member)        
    for (pos = list_entry((head)->prev, typeof(*pos), member),    
        n = list_entry(pos->member.prev, typeof(*pos), member);    
         &pos->member != (head);                     
         pos = n, n = list_entry(n->member.prev, typeof(*n), member))
登录后复制

list_for_each_entry_safe_reverse 是从pos的前一个结构指针开始,逆序遍历链表上的结构指针,同时加了节点删除保护。
至此为止,我们介绍了linux中双向循环链表的结构、所有的操作函数和遍历宏定义。相信以后在linux代码中遇到链表的使用,不会再陌生。

总之,双向循环链表是嵌入式Linux中不可或缺的一部分。它们被广泛应用于各种场景,如内核模块、驱动程序、网络协议栈等。希望本文能够帮助读者更好地理解Linux通用的双向循环链表的实现原理和相关技术。

以上就是深入探讨Linux通用的双向循环链表的实现原理和相关技术的详细内容,更多请关注慧达安全导航其它相关文章!

点赞(0)

评论列表 共有 0 条评论

暂无评论
立即
投稿
发表
评论
返回
顶部